TM221C40R
controller M221 40 IO relay

Green
Premium"
promiks

Main	
Range of product	Modicon M221
Product or component type	Logic controller
[Us] rated supply voltage	$100 \ldots 240$ V AC
Discrete input number	24 discrete input conforming to IEC 61131-2 Type
	1
Analogue input number	2 at input range: $0 \ldots .10 \mathrm{~V}$
Discrete output type	Relay normally open
Discrete output number	16 relay
Discrete output voltage	$5 \ldots .125 \mathrm{~V}$ DC
	$5 \ldots . .250 \mathrm{~V} \mathrm{AC}$
Discrete output current	2 A

Complementary

Discrete I/O number	40
Number of I/O expansion module	< $=7$ for relay output
Supply voltage limits	$85 . . .264 \mathrm{~V}$
Network frequency	$50 / 60 \mathrm{~Hz}$
Inrush current	<= 40 A
Power consumption in VA	<= 67 VA at $100 \ldots 240 \mathrm{~V}$ with max number of I/O expansion module <= 37 VA at $100 \ldots 240 \mathrm{~V}$ without $1 / \mathrm{O}$ expansion module
Power supply output current	0.52 A at 5 V for expansion bus 0.24 A at 24 V for expansion bus
Discrete input logic	Sink or source (positive/negative)
Discrete input voltage	24 V
Discrete input voltage type	DC
Analogue input resolution	10 bits
LSB value	10 mV
Conversion time	1 ms per channel + 1 controller cycle time for analog input
Permitted overload on inputs	+/- 30 V DC for analog input with 5 min maximum +/- 13 V DC for analog input permanent
Voltage state 1 guaranteed	>= 15 V for input
Current state 1 guaranteed	$>=2.6 \mathrm{~mA}$ for fast input $>=4.2 \mathrm{~mA}$ for discrete input
Voltage state 0 guaranteed	<= 5 V for input
Current state 0 guaranteed	$<=1.3 \mathrm{~mA}$ for discrete input $<=0.6 \mathrm{~mA}$ for fast input
Discrete input current	7 mA for discrete input 5 mA for fast input
Input impedance	4.9 kOhm for fast input 3.4 kOhm for discrete input 100 kOhm for analog input
Response time	10 ms turn-on operation for output $35 \mu \mathrm{~s}$ turn-off operation for input; 12... 15 terminal $35 \mu \mathrm{~s}$ turn-off operation for input; $12 . . .15$ terminal 10 ms turn-off operation for output $5 \mu \mathrm{~s}$ turn-on operation for fast input; 10, 11, 16, 17 terminal $35 \mu \mathrm{~s}$ turn-on operation for input; other terminals terminal $5 \mu \mathrm{~s}$ turn-off operation for fast input; $10,11,16,17$ terminal $100 \mu \mathrm{~s}$ turn-off operation for input; other terminals terminal
Configurable filtering time	0 ms for input 12 ms for input 3 ms for input

Output voltage limits	$\begin{aligned} & 125 \text { V DC } \\ & 277 \text { V AC } \end{aligned}$
Current per output common	7 A
Absolute accuracy error	+/-1\% of full scale for analog input
Electrical durability	Inductive AC-15, (cos phi $=0.35$) $240 \mathrm{~V} / 120 \mathrm{VA}: 100000$ cycles Resistive DC-12, $24 \mathrm{~V} / 48 \mathrm{~W}$: 100000 cycles Resistive AC-12, $120 \mathrm{~V} / 240 \mathrm{VA}$: 100000 cycles Inductive AC-15, (cos phi $=0.35$) $240 \mathrm{~V} / 36 \mathrm{VA}: 300000$ cycles Resistive AC-12, $120 \mathrm{~V} / 80 \mathrm{VA}: 300000$ cycles Inductive (L/R $=7 \mathrm{~ms}$) DC-13, $24 \mathrm{~V} / 24 \mathrm{~W}$: 100000 cycles Resistive DC-12, $24 \mathrm{~V} / 16 \mathrm{~W}: 300000$ cycles Inductive (L/R = 7 ms) DC-13, $24 \mathrm{~V} / 7.2 \mathrm{~W}: 300000$ cycles Inductive AC-14, (cos phi $=0.7$) $240 \mathrm{~V} / 240 \mathrm{VA}: 100000$ cycles Inductive AC-15, (cos phi $=0.35) 120 \mathrm{~V} / 60 \mathrm{VA}: 100000$ cycles Inductive AC-14, (cos phi $=0.7) 240 \mathrm{~V} / 72 \mathrm{VA}: 300000$ cycles Inductive AC-15, (cos phi $=0.35) 120 \mathrm{~V} / 18 \mathrm{VA}: 300000$ cycles Resistive AC-12, $240 \mathrm{~V} / 480 \mathrm{VA}$: 100000 cycles Inductive AC-14, (cos phi $=0.7$) $120 \mathrm{~V} / 120 \mathrm{VA}: 100000$ cycles Resistive AC-12, $240 \mathrm{~V} / 160 \mathrm{VA}: 300000$ cycles Inductive AC-14, (cos phi $=0.7$) $120 \mathrm{~V} / 36 \mathrm{VA}: 300000$ cycles
Switching frequency	20 switching operations/minute with maximum load
Mechanical durability	>= 20000000 cycles for relay output
Minimum load	1 mA at 5 V DC for relay output
Protection type	Without protection at 5 A
Reset time	1 s
Memory capacity	256 kB for user application and data RAM with 10000 instructions 256 kB for internal variables RAM
Data backed up	256 kB built-in flash memory for backup of application and data
Data storage equipment	2 GB SD card optional
Battery type	BR2032 lithium non-rechargeable, battery life: 4 yr
Backup time	1 year at $25^{\circ} \mathrm{C}$ by interruption of power supply
Execution time for 1 KInstruction	0.3 ms for event and periodic task
Execution time per instruction	$0.2 \mu \mathrm{~s}$ Boolean
Exct time for event task	60μ s response time
Maximum size of object areas	512 \%M memory bits 8000 \%MW memory words 512 \%KW constant words 255 \%TM timers 255 \%C counters
Realtime clock	With
Clock drift	< $=30 \mathrm{~s} /$ month at $25^{\circ} \mathrm{C}$
Regulation loop	Adjustable PID regulator up to 14 simultaneous loops
Counting input number	4 fast input (HSC mode) (counting frequency: 100 kHz), counting capacity: 32 bits
Control signal type	A/B Pulse/direction Single phase
Integrated connection type	USB port with connector mini B USB 2.0 Non isolated serial link "serial 1" with connector RJ45 and interface RS485 Non isolated serial link "serial 2" with connector RJ45 and interface RS232/RS485
Supply	Serial serial link supply at 5 V 200 mA
Transmission rate	$1.2 \ldots . .115 .2 \mathrm{kbit} / \mathrm{s}(115.2 \mathrm{kbit} / \mathrm{s}$ by default) for bus length of 15 m - communication protocol: RS485 $1.2 . .115 .2 \mathrm{kbit} / \mathrm{s}$ ($115.2 \mathrm{kbit} / \mathrm{s}$ by default) for bus length of 3 m - communication protocol: RS232 $480 \mathrm{Mbit} / \mathrm{s}$ - communication protocol: USB
Communication port protocol	USB port : USB protocol - SoMachine-Network Non isolated serial link : Modbus protocol master/slave - RTU/ASCII or SoMachine- Network
Local signalling	1 LED red for module error (ERR) 1 LED green for PWR 1 LED green for RUN 1 LED green for SD card access (SD) 1 LED red for BAT 1 LED green for SL1 1 LED green for SL2 1 LED per channel green for I/O state
Electrical connection	Mini B USB 2.0 connector for a programming terminal
	Schneider Electric $2 / 9$

Terminal block, 3 terminal(s) for connecting the 24 V DC power supply
Connector, 4 terminal(s) for analogue inputs
Removable screw terminal block for inputs
Removable screw terminal block for outputs

Cable length	$<=10 \mathrm{~m}$ shielded cable for fast input
	$<=10 \mathrm{~m}$ shielded cable for fast input
$<=30 \mathrm{~m}$ unshielded cable for output	
$<=30 \mathrm{~m}$ unshielded cable for digital input	
	$<=1 \mathrm{~m}$ unshielded cable for analog input

Environment

standards	EN/IEC 60664-1 EN/IEC 61131-2 EN/IEC 61010-2-201
product certifications	ABS CSA CULus LR IACS E10 RCM EAC DNV-GL
environmental characteristic	Ordinary and hazardous location
resistance to electrostatic discharge	4 kV on contact conforming to EN/IEC 61000-4-2 8 kV in air conforming to EN/IEC 61000-4-2
resistance to electromagnetic fields	$10 \mathrm{~V} / \mathrm{m}(80 \mathrm{MHz} . .1 \mathrm{GHz}$) conforming to EN/IEC 61000-4-3 $3 \mathrm{~V} / \mathrm{m}(1.4 \mathrm{GHz} . . .2 \mathrm{GHz}$) conforming to EN/IEC 61000-4-3 $1 \mathrm{~V} / \mathrm{m}(2 \ldots 2.7 \mathrm{GHz})$ conforming to EN/IEC 61000-4-3
resistance to magnetic fields	$30 \mathrm{~A} / \mathrm{m}$ at $50 \ldots 60 \mathrm{~Hz}$ conforming to EN/IEC 61000-4-8
resistance to fast transients	2 kV for power lines conforming to EN/IEC 61000-4-4 2 kV for relay output conforming to EN/IEC 61000-4-4 1 kV for Ethernet line conforming to EN/IEC 61000-4-4 1 kV for serial link conforming to EN/IEC 61000-4-4 1 kV for I/O conforming to EN/IEC 61000-4-4
surge withstand	2 kV for power lines (AC) in common mode conforming to EN/IEC 61000-4-5 2 kV for power lines (AC) in common mode conforming to EN/IEC 61000-4-5 2 kV for relay output in common mode conforming to EN/IEC 61000-4-5 1 kV for I/O in common mode conforming to EN/IEC 61000-4-5 1 kV for shielded cable in common mode conforming to EN/IEC 61000-4-5 0.5 kV for power lines (DC) in differential mode conforming to EN/IEC 61000-4-5 1 kV for power lines (AC) in differential mode conforming to EN/IEC 61000-4-5 1 kV for relay output in differential mode conforming to EN/IEC 61000-4-5 0.5 kV for power lines (DC) in common mode conforming to EN/IEC 61000-4-5
resistance to conducted disturbances, induced by radio frequency fields	10 Vrms ($0.15 \ldots 80 \mathrm{MHz}$) conforming to EN/IEC 61000-4-6 $3 \mathrm{Vrms}(0.1 \ldots 80 \mathrm{MHz})$ conforming to Marine specification (LR, ABS, DNV, GL) 10 Vrms (spot frequency ($2,3,4,6.2,8.2,12.6,16.5,18.8,22,25 \mathrm{MHz}$)) conforming to Marine specification (LR, ABS, DNV, GL)
electromagnetic emission	Conducted emissions conforming to EN/IEC 55011 power lines (AC), $0.15 \ldots 0.5 \mathrm{MHz}$: $79 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ QP/66 dB $\mu \mathrm{V} / \mathrm{m}$ AV

Conducted emissions conforming to EN/IEC 55011 power lines (AC), $0.5 \ldots 300 \mathrm{MHz}$: $73 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ QP/60 dB $\mu \mathrm{V} / \mathrm{m}$ AV
Conducted emissions conforming to EN/IEC 55011 power lines, $10 . . .150 \mathrm{kHz}$:
$120 . . .69 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ QP
Conducted emissions conforming to EN/IEC 55011 power lines, $150 \mathrm{kHz} . .1 .5 \mathrm{MHz}$:
$79 . . .63 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ QP
Conducted emissions conforming to EN/IEC 55011 power lines, $1.5 \ldots 30 \mathrm{MHz}: 63$
$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ QP
Radiated emissions conforming to EN/IEC 55011 class A $10 \mathrm{~m}, 30 \ldots 230 \mathrm{MHz}$: 40
$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ QP
Radiated emissions conforming to EN/IEC 55011 class A $10 \mathrm{~m}, 200 \mathrm{MHz} . .1 \mathrm{GHz}: 47$ $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ QP

immunity to microbreaks	10 ms
ambient air temperature for operation	$-10 . . .55^{\circ} \mathrm{C}$ for horizontal installation $-10 . . .35^{\circ} \mathrm{C}$ for vertical installation
ambient air temperature for storage	$-25 . .70^{\circ} \mathrm{C}$
relative humidity	10... 95% without condensation in operation $10 . . .95 \%$ without condensation in storage
IP degree of protection	IP20 with protective cover in place
pollution degree	<=2
operating altitude	0... 2000 m
storage altitude	0... 3000 m
vibration resistance	3.5 mm (vibration frequency: $5 \ldots 8.4 \mathrm{~Hz}$) on symmetrical rail 1 gn (vibration frequency: $8.4 . .150 \mathrm{~Hz}$) on symmetrical rail 3.5 mm (vibration frequency: $5 \ldots 8.4 \mathrm{~Hz}$) on panel mounting 1 gn (vibration frequency: 8.4... 150 Hz) on panel mounting
shock resistance	$98 \mathrm{~m} / \mathrm{s}^{2}$ (test wave duration: 11 ms)

Offer Sustainability

Sustainable offer status	Green Premium product
RoHS (date code: YYWW)	Compliant - since 1415 - Schneider Electric declaration of conformity
REACh	Reference not containing SVHC above the threshold
Product environmental profile	Available
Product end of life instructions	Available

Dimensions

Mounting on a Rail

Direct Mounting on a Panel Surface

(1) Install a mounting strip

Mounting Hole Layout

Mounting
Correct Mounting Position

Acceptable Mounting Position

Incorrect Mounting Position

Clearance

Digital Inputs

Wiring Diagram (Positive Logic)

(*) Type T fuse
Wiring Diagram (Negative Logic)

(*) Type T fuse
Connection of the Fast Inputs

I0, 11, I6, I7

Relay Outputs

Negative Logic (Sink)

(*) Type T fuse
(1) The COM0, COM1, COM2 and COM3 terminals are not connected internally.
(2) To improve the life time of the contacts, and to protect from potential inductive load damage, you must connect a free wheeling diode in parallel to each inductive DC load or an RC snubber in parallel of each inductive AC load

B Sink wiring (negative logic)
Positive Logic (Source)

(*) Type T fuse
(1) The COM0, COM1, COM2 and COM3 terminals are not connected internally.
(2) To improve the life time of the contacts, and to protect from potential inductive load damage, you must connect a free wheeling diode in parallel to each inductive DC load or an RC snubber in parallel of each inductive AC load
A Source wiring (positive logic)

Analog Inputs

The (-) poles are connected internally.

Pin	Wire Color
0 V	Black
AN1	Red
0 V	Black
AN0	Red

USB Mini-B Connection

SL1 Connection

SL1

\mathbf{N}°	RS 232	RS 485
1	RxD	N.C.
2	TxD	N.C.
3	RTS	N.C.
4	N.C.	D1
5	N.C.	D0
6	CTS	N.C.
7	N.C*.	5 Vdc
8	Common	Common

N.C.: not connected

* : 5 Vdc delivered by the controller. Do not connect.

SL2 Connection

\mathbf{N}°	RS 485
1	N.C.
2	N.C.
3	N.C.
4	D1
5	D0
6	N.C.
7	N.C.
8	Common

N.C.: not connected

Derating Curves

Embedded Digital Inputs (No Cartridge)

X : Ambient temperature
Y: Input simultaneous ON ratio
Embedded Digital Inputs (with Cartridge)

X: Ambient temperature
Y : Input simultaneous ON ratio

